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Flavour thSiCS at the LHC: high signal rate in the forward region
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Single-arm forward detector

The LHCb experiment

[ Forward Region } >
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[ High signal rate
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>[ Fast and reliable real-time data processing (trigger) ]

Y
Good statistics for high ] Outstanding control over the systematic
precision physics J uncertainties (e.g. dependences of the efficiencies)
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~ A
Single-arm forward detector

Machine (earning for ]
“The LHCb experiment

[ Forward Region } >
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[ High signal rate
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>[ Fast and reliable real-time data processing (trigger) ]

V' MW for fact reconstruction (tracking)
V' BDT for High-level topolsgical triggers

Y
Good statistics for high ] Outstanding control over the systematic
precision physics J uncertainties (e.g. dependences of the efficiencies)

V' Combine detector recponces for particle identification
v Gen. wodele for efﬁ'cz‘ehcy modeling
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Conceptual steps
Hits in the Tracks with mass Tracks from Fully Comparison
Tracks . heavy hadron reconstructed .
detector hypothesis (PID) with theory
decay decays

Neural Networks for Track Reconstruction
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U\ Vertex: “origin” of tracks
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Tracking

Machine Learning used in several steps

. Upstream track
of the track reconstruction. 12 13

For instance, in creation of:
TT

- Long tracks, VELO /”I:)—n—g-track
- Downstream tracks 1

" ) ) VELO track Downstream track
At the end of the “tracking sequence”, e

fake tracks are rejected using a deep

T track

neural network.

/

Profits:

. . More about tracking at LHCb
e efficiency gain,

e fake tracks reduction, e LHCB-PROC-2017-013
LHCb-PUB-2017-001
J

e faster execution in the trigger. . °
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— Advanced ML solutions for the LHCb experiment LHCb-PUB-2017-011
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Rejecting fake tracks at an early stage is crucial My, [MeVic?]
to reduce the CPU cost of the upcoming |- I TN R
. e . 0 - .
Particle Identification and event 2 09F E
S o 3
reconstruction. S 08F =
= - LHCb :
. . 2 0.7 - preliminary =
A deep neural network is trained on = R E
. . . . . *~' [ — run 2 ghost probability ]
Simulation to improve the fake track rejection. o5k track fit x2/ndf E
E —— run 1 ghost probabili 3
Track features are (22 features): 04k e 3

0 0.5 1
v quality of the Kalman-Filter fit (y?) and efficiency

number of hits for each sub-detector Overall gain of 16% of CPU resources in the CPU

real-time processing (trigger) PC farm.

Output-rate reduced by 36%. TA PE & DISK

v/ the reconstructed momentum (p; and )
v/ average occupancy of each sub-detector
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Conceptual steps
Hits in the Tracks with mass UEIE S U Fully Comparison
Tracks . heavy hadron reconstructed .
detector hypothesis (PID) with theory
decay decays

Topological trigger selection

=

Primary Vertex \' ............ Secondary Vertex

/\ ry Vertex
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— Advanced ML solutions for the LHCb experiment
How to trigger on b-hadron decays

4 )
= - . (Preselect tracks inconsistent with all PVs\
" g Selecting events with at least n tracks
= E inconsistent with the PV & andp > 5 GeV/c ind py> 0.5 GeV/c J
é % Lrreducible background from strange, 4 For each pair of tracks with distance of )
% charm and fake fracke. __ closest approach (DOCA) < 0.2 mm
S (ced at an early stage with n = 1 :
; (Add to the 2-track combination a 3™
@  Trigger on partially reconstructed _ track with DOCA<0.2 mm
b-hadron decays ‘ v
Topological trigger: cannst rely on (Adflhto the 3-.track combination a]
badvon identification. \ 4" track with DOCA < 0.2 mm
. Requires 2 3-body decayg¢
_E Veto on prompt charm
S Fully reconstruct the decay through an
> :
% exclusive decay mode Binary classification of the combination
E % Uced for 2-body decaye since 2010 -
> ; Since 2015: “Turbo” triggers available, but suboptimal for many-body decaye:
9‘ = too many PID combinations; too /f.ée/g to mics a track
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— Advanced ML solutions for the LHCb experiment
Make classification fast and stable with a Bonsai-BDT

Train a Gradient-Boosted Decision Tree on discretized features and
convert the decision rule into a 1D array look-up problem.

discrete features = insensitive to fluctuations of the resolution functions;
1D-array look-up = virtually zero evaluation time.

Features:
= Sum of the p_ of the tracks (12 bins) and minimum (15 bins)
> invariant mass of the combination (3 bins)
> Distance of closest approach (4 bins)
> Consistency of tracks (2 bins) and secondary vertex (13 bins) with any PV
v Corrected mass (11 bins):

........ true B pat %
Meorr = \/m2 + |p/Tmiss‘2 + |p/Tmiss| ..a"]! ...........
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— Advanced ML solutions for the LHCb experiment
Performance of the BBDT-based triggers
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LHCb-DP-2018-001

— Advanced ML solutions for the LHCb experiment

Conceptual steps

o . Tracks from Full .
Hits in the Tracks with mass acks 1ro Uy Comparison
Tracks . heavy hadron reconstructed .
detector hypothesis (PID) with theory
decay decays

Smart Particle Identification
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— Advanced ML solutions for the LHCb experiment
Particle Identification at LHCb

Particle Identification (PID) is a crucial step in the reconstruction pipeline that allows:

> To attach a mass hypothesis to the reconstructed charged tracks
> To filter out abundant particles when looking for rare signatures

v N(pions) > N(kaons) > N(protons) > N(electrons) > N (muons)

Four different sub-detectors contribute to form the mass hypothesis, with totally
different principle, read-out, reconstruction strategy:

RICH detectors °
(Better) identifies: _ B
pions, kaons, protons (Better) identifies electrons. (Better) identifies muons.
expected from the track Check consistency of Check consistency of
parameters are compared to hits  clusters of hits w/ tracks. tracks of hits w/ tracks.
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— Advanced ML solutions for the LHCb experiment
How to combine the response from the detectors?

Combined Likelihood Approach = OP =
s LHCb :

oy > 0.8F .

Compute separately the likelihood = R )

= - _

. . = | |
ratio £ /C for the various detector o 0.6p ]
T e i ]
and arithmetically sum up & 0Ar ‘]
the logl /LC 02F - AlogLp-m .
i s ProbNNp "
0_ [P B R S PR G

Theoretically the most powerful test, 0 0.2 0.4 Olési na({.gfﬁcien}:
in practice there are parameters of the detector g y
response that cannot be easily included in a likelihood

computation (e.g. the number of hits shared with g I ————— LHCt;—
neighbour tracks) 9 - i
D 08 g

ho) L 4

= 0.6f e

. . 3 0.6F T
Machine Learning Approach &1 A
Feed a Multi-Label classifier with all 8 04r bk
the features associated to a track in 02 - AlogL(u-m 3]

. B ProbNN 1

the reconstruction of each detector, abs ra s \ ]
and train it on a large simulated dataset. ¢ e & 0‘6Signa(f'§fﬁcien}:y
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— Advanced ML solutions for the LHCb experiment
The most widely adopted ML solution: ProbNN

The most widely adopted ML solution: ProbNN
> Shallow Neural Network (TMVA)
> Sigmoid activation function

New algorithm based on Deep Neural Nets

(keras) in multiclassification mode.

> Loss function: Bernoulli Cross-Entropy . [#4 MVAE60% 4 Baseline Eff 60% |
. |# % MVAEff80% & 4 Baseline Eff 80%
4 MVAEff90% ¥ Baseline Eff 90%
Input features: T e
v Tracking: momentum and track quality > o a T e —
v’ RICH: likelihood ratios; geometrical and & 5 TR B! PR B
= Lo == f
kinematical acceptance flags i e | ——— )
v’ Calorimeters: likelihood ratios, quality of N T 20 L e
the track—cluster matching gy )
/ Muon System: geometrical acceptance, 090_0.;. 0001 0002 000300040005 ...0.6(.].;5 =0007

Muon 1/(Transverse Momentum MeV/c¢)

Both implicit (.q(/.QT) and explicit (features) dependence

binary response used at trigger level,

likelihood ratio based on muon-track ) e o :
on kinematic variables: careful modeling is required.

quality.
(1-AUC)/(1-AUChaseline) LHCb Simulation, preliminary
Ghost Electron Muon Pion Kaon Proton
baseline I I I I I I
Edeep NN -29 % -4| % -52 % -37 % -20 % -17%

Lucio Anderlini (INFN Firenze) June 7th MLSE 2018 - Pittsburgh, PA



http://cds.cern.ch/record/2281289
https://indico.cern.ch/event/567550/papers/2629676/files/6064-machine-learning-based_10.pdf

— Advanced ML solutions for the LHCb experiment PRL 115, 072001 (2015)

Conceptual steps
Hits in the Tracks with mass Tracks from AL Comparison
Tracks . heavy hadron reconstructed .
detector hypothesis (PID) with theory
decay decays

Machine Learning
in the comparison of DATA with THEORY
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— Advanced ML solutions for the LHCb experiment _
Modelling of steep variation of a complicated efficiency

1. To measure spectra, one needs good modelling of relative efficiency variations.
2. A perfect simulation of all the detectors concurring to PID is a very challenging task

Two approaches: Flatten the efficiency response Model efficiency variation w/ data

Lucio Anderlini (INFN Firenze) June 7th MLSE 2018 - Pittsburgh, PA



— Advanced ML solutions for the LHCb experiment
Modelling of steep variation of a complicated efficiency

1.
2.

To measure spectra, one needs good modelling of relative efficiency variations.
A perfect simulation of all the detectors concurring to PID is a very challenging task

Model efficiency variation w/ data

Train a classifier with a loss function including a “FLAT Cramer—von Mises” term

Two approaches:

Flatten the efficiency response

7

[ Classifier response

assifer
Lpr=< / (Fgiobal ()
N

[ Cumulative distribution of s ] [

Cumulative distribution of s in
intervals of variable X

o
o
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Efficiency

¢

Loss function for X = p, p_, multiplicity and
pseudorapidity are summed up:

20

+ £, e

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Lrr, = LFL, + LFL,. + LFL

nTracks
Muon 1/(Transverse Momentum MeV/c)

And used to train oblivious decision trees to

] ... but to introduce flatness,
obtain “Flat PID models”

some discrimination power is lost...

]
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— Advanced ML solutions for the LHCb experiment
Modelling of steep variation of a complicated efficiency

1. To measure spectra, one needs good modelling of relative efficiency variations.
2. A perfect simulation of all the detectors concurring to PID is a very challenging task

Two approaches: Flatten the efficiency response Model efficiency variation w/ data

g Non-parametric density
estimation in the space Sampling
(PID, n, p,, multiplicity)
based on the Meerkat R .
algorithm. | PIDpary | PIDyc

. . * d(l?l * (l(I,"
Training on real and . /v
1

simulated calibration SA SA
SE 1 o 1

samples (unambiguous PID

@ <
from kinematic constraints). | —Tﬁq i PIDyc
\

Data Simulation

“ “
S S|
a a

Random
H e generator
Build a generatlve model on in [0, 1) PID-corr:acted Slmulated
top of data PDEs (sampling); | dataset | | dataset
or correct the simulated Transfor
. . |
| response for signal sample. PIDcorr = Poypy (Pyc(PIDwc|pr, 75 Nevt) [P, 1, Nevt),J
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Conclusion
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Conclusion and summary

The LHCb software is being complemented end-to-end with Machine Learning solutions.

Reconstruction
High-Level Trigger Selection
Combination of PID detector responses

Random generation (or correction of full simulation) from what learnt from data

$ 434

The challenge for the future upgrade is to further increase the Machine-Learning
solutions to

> speed-up the reconstruction
> drastically reduce the background yield on disk
o> replace (the most expensive) parts of detector simulation.
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