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Flavour physics at the LHC: high signal rate in the forward region

High-pT physics:

  Focus of ATLAS & CMS 

(see previous talks)

Heavy-Flavour physics:

  Focus of LHCb 
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The LHCb experiment 

Forward Region

Single-arm forward detector

High signal rate Fast and reliable real-time data processing (trigger)

Good statistics for high 
precision physics

Outstanding control over the systematic 
uncertainties (e.g. dependences of the efficiencies)
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The LHCb experiment 

Forward Region

Single-arm forward detector

High signal rate Fast and reliable real-time data processing (trigger)

Good statistics for high 
precision physics

Outstanding control over the systematic 
uncertainties (e.g. dependences of the efficiencies)

MacƇƈƧƞ LeƀrƍƢƧg ƅoƫ

✓ Nµ foƑ ƟƀsƓ ƫƞcoƍƬtƑƔƜtƢoƍ (tƑaƜkƈƍƠ)
✓ B«Õ foƑ HƈƠh-leƕƄƥ tƨƏoƥƎgƢƂaƥ tƑƈƠgƞƑƬ

✓ ComƁƈƧƞ deƓƄƜtƨƑ ƫesƏƎƧsƞƒ Ɵor ƏƀƫtƢƂƥe ƈdƞƍƭifƈƂƚƭiƎn
✓ Gen. moƃƄƥs ƅƨƫ efƅƈƜƢenƂƲ mƎƃƞƥinƆ 
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IJMPA 30 (2015) 1530022

https://arxiv.org/abs/1412.6352
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Neural Networks for Track Reconstruction
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Hits in the 
detector

Tracks
Tracks with mass 
hypothesis (PID)

Fully 
reconstructed 

decays

Comparison 
with theory

Conceptual steps

From the curvature we 
measure the momentum

   p = ᶕ m v 

Hits = energy deposits 

Vertex: “origin” of tracks

Track = trajectory of a particle

Tracks from 
heavy hadron 

decay

JINST 10 (2015) P02007

https://arxiv.org/abs/1408.1251
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Tracking 
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JINST 10 (2015) P02007

Machine Learning used in several steps 

of the track reconstruction.

For instance, in creation of:

 - Long tracks,

 - Downstream tracks

At the end of the “tracking sequence”, 

fake tracks are rejected using a deep 

neural network.

More about tracking at LHCb

● LHCB-PROC-2017-013 

● LHCb-PUB-2017-001 

Profits:

● efficiency gain, 

● fake tracks reduction,

● faster execution in the trigger.

https://arxiv.org/abs/1408.1251
https://cds.cern.ch/record/2260684
https://cds.cern.ch/record/2240723?ln=it
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Fake track rejection

Fake tracks produced:

➪ in the matching between the VELO and 

the upstream tracking stations (step 2)

➪ In the Kalman-Fit procedure (step 4)

Rejecting fake tracks at an early stage is crucial 

to reduce the CPU cost of the upcoming 

Particle Identification and event 

reconstruction. 

A deep neural network is trained on 

Simulation to improve the fake track rejection.

Track features are (22 features):

✓ quality of the Kalman-Filter fit (ᶩ2) and 

number of hits for each sub-detector 

✓ the reconstructed momentum (p
T
 and ᶙ)

✓  average occupancy of each sub-detector
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Overall gain of 16% of CPU resources in the 
real-time processing (trigger) PC farm.

Output-rate reduced by 36%.

C·U

TA·¬ & DIºÌ

LHCb-PUB-2017-011

https://cds.cern.ch/record/2255039/files/LHCb-PUB-2017-011.pdf
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Topological trigger selection
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How to trigger on b-hadron decays

Selecting events with at least n tracks 

inconsistent with the PV
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IrƑeƝƔcƢƁƥe bƀƂƤgƑƨuƧd ƅƫƎm ƒƭrƚƍƠe, 
cƇaƫm ƀƍƝ fƚƊe ƭrƀƂƤs.
Useƃ ƀƭ ƚn eƀƑƥy ƒƭagƄ ƖƢƭh ƍ = 1

TopƎƋƨƠicƀƋ ƭrƢƆƠer: caƍƧƎt Ƒƞƥy oƍ 
haƃƫƎn ƢƃeƧtƈƅƢƜatƈƨƍ. 
ReqƔƢƑeƬ  ≥ 3-boƃƲ dƄƂƚƲs

Useƃ ƟƎr 2-boƃƲ dƄƂƚƲs ƒiƧcƄ 2010
SinƂƄ 2015: “TurƁƎ” tƑiƠgƄƑƬ avƀƢƋaƛlƄ, buƓ ƬƔbƨƏƭimƀƋ Ɵƨr ƌaƧy-boƃƲ dƄƂƚƲs: 
toƎ ƌƚƧy PI« ƂoƦbƈƍƚƭiƎnƒ; toƎ ƋƢƤelƘ ƭƎ mƢƒƬ a tƑƀƜk 

Trigger on partially reconstructed 

b-hadron decays 

Fully reconstruct the decay through an 

exclusive decay mode
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For each pair of tracks with distance of 
closest approach (DOCA) < 0.2 mm

Preselect tracks inconsistent with all PVs

 and p > 5 GeV/c and p
T
 > 0.5 GeV/c

Add to the 2-track combination a 3rd 
track  with DOCA < 0.2 mm

Add to the 3-track combination a 
4th track  with DOCA < 0.2 mm

Binary classification of the combination 

JINST 8 (2013) P04022

Veto on prompt charm

https://arxiv.org/abs/1211.3055
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Make classification fast and stable with a Bonsai-BDT

Train a Gradient-Boosted Decision Tree on discretized features and 

convert the decision rule into a 1D array look-up problem. 
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Gligorov and Williams, JINST 8 (2013) P02013

discrete features ⇒ insensitive to fluctuations of the resolution functions;

1D-array look-up ⇒ virtually zero evaluation time.

Features:

➪ Sum of the p
T
 of the tracks (12 bins) and minimum (15 bins)

➪ invariant mass of the combination (3 bins)

➪ Distance of closest approach (4 bins)

➪ Consistency of tracks (2 bins) and secondary vertex  (13 bins) with any PV

➪ Corrected mass (11 bins): 

https://arxiv.org/abs/1210.6861
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Performance of the BBDT-based triggers
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Topo2Body | Topo3Body

Topo2Body | Topo3Body

JINST 8 (2013) P04022

https://arxiv.org/abs/1211.3055
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Smart Particle Identification
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LHCb-DP-2018-001

RICH detectors
ECAL & 
HCAL

MUON

https://lhcbproject.web.cern.ch/lhcbproject/Publications/p/LHCb-DP-2018-001.html
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Particle Identification at LHCb

Particle Identification (PID) is a crucial step in the reconstruction pipeline that allows:

➪ To attach a mass hypothesis to the reconstructed charged tracks

➪ To filter out abundant particles when looking for rare signatures 
✓ N(pions) > N(kaons) > N(protons) > N(electrons) > N (muons)

➪ To observe photons (and reconstruct ᶢ0 → ᶕᶕ decays) 

Four different sub-detectors contribute to form the mass hypothesis, with totally 

different principle, read-out, reconstruction strategy:
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ECAL & 
HCAL

MUON

RICH detectors

(Better) identifies:
  pions, kaons, protons
Rings expected from the track 
parameters are compared to hits 

(Better) identifies electrons.
Check consistency of 
clusters of hits w/ tracks.

(Better) identifies muons.
Check consistency of 
tracks of hits w/ tracks.

LHCb-DP-2018-001

https://lhcbproject.web.cern.ch/lhcbproject/Publications/p/LHCb-DP-2018-001.html
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How to combine the response from the detectors?

Combined Likelihood Approach 

Compute separately the likelihood 

ratio L
X
/Lᶢ  for the various detector 

and arithmetically sum up 

the logL
X
/Lᶢ

Machine Learning Approach 

Feed a Multi-Label classifier with all 

the features associated  to a track in 

the reconstruction of each detector, 

and train it on a large simulated dataset. 
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Theoretically the most powerful test, 
in practice there are parameters of the detector 
response that cannot be easily included in a likelihood 
computation (e.g. the number of hits shared with 
neighbour tracks)

 CERN-POSTER-2017-594 and Proceedings 

http://cds.cern.ch/record/2281289
https://indico.cern.ch/event/567550/papers/2629676/files/6064-machine-learning-based_10.pdf
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The most widely adopted ML solution: ProbNN

The most widely adopted ML solution: ProbNN

➪ Shallow Neural Network (TMVA)

➪ Sigmoid activation function

➪ Loss function: Bernoulli Cross-Entropy

Input features:
✓ Tracking: momentum and track quality
✓ RICH: likelihood ratios; geometrical and 

kinematical acceptance flags

✓ Calorimeters: likelihood ratios, quality of 

the track−cluster matching

✓  Muon system: geometrical acceptance, 

binary response used at trigger level, 

likelihood ratio based on muon-track 

quality.
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New algorithm based on Deep Neural Nets 
(keras) in multiclassification mode. 

 CERN-POSTER-2017-594 and Proceedings 

Both implicit (L
X
/Lᶢ) and explicit (features) dependence 

on kinematic variables: careful modeling is required.

http://cds.cern.ch/record/2281289
https://indico.cern.ch/event/567550/papers/2629676/files/6064-machine-learning-based_10.pdf
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Machine Learning 
in the comparison of DATA with THEORY
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PRL 115, 072001 (2015)

https://arxiv.org/abs/1507.03414
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Modelling of steep variation of a complicated efficiency

1. To measure spectra, one needs good modelling of relative efficiency variations.

2. A perfect simulation of all the detectors concurring to PID is a very challenging task

Two approaches:

17

Model efficiency variation w/ dataFlatten the efficiency response
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Model efficiency variation w/ dataFlatten the efficiency response

Train a classifier with a loss function including a “FLAT Cramer−von Mises” term

Cumulative distribution of s

Classifier response

Cumulative distribution of s in 
intervals of variable X

X
(X)

Average on X bins

Loss function for X = p, p
T
, multiplicity and 

pseudorapidity are summed up:

And used to train oblivious decision trees to 
obtain “Flat PID models”

… but to introduce flatness, 
some discrimination power is lost...

 CERN-POSTER-2017-594 and Proceedings 

http://cds.cern.ch/record/2281289
https://indico.cern.ch/event/567550/papers/2629676/files/6064-machine-learning-based_10.pdf


Lucio Anderlini (INFN Firenze)  June 7th MLSE 2018 − Pittsburgh, PA

Advanced ML solutions for the LHCb experiment 

Modelling of steep variation of a complicated efficiency
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2. A perfect simulation of all the detectors concurring to PID is a very challenging task

Two approaches:
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Model efficiency variation w/ dataFlatten the efficiency response

Non-parametric density 
estimation in the space
(PID, ᶙ, p

T
, multiplicity) 

based on the Meerkat 
algorithm.

Training on real and 
simulated calibration 
samples (unambiguous PID 
from kinematic constraints).

Build a generative model on 
top of data PDEs (sampling);

or correct the simulated 
response for signal sample.

LHCb-DP-2018-001

https://lhcbproject.web.cern.ch/lhcbproject/Publications/p/LHCb-DP-2018-001.html
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Conclusion
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Conclusion and summary

The LHCb software is being complemented end-to-end with Machine Learning solutions.

➪ Reconstruction

➪ High-Level Trigger Selection

➪ Combination of PID detector responses

➪ Random generation (or correction of full simulation) from what learnt from data

The challenge for the future upgrade is to further increase the Machine-Learning 

solutions to 

➪ speed-up the reconstruction

➪ drastically reduce the background yield on disk

➪ replace (the most expensive) parts of detector simulation.
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